ANTENNA THEORY

Symbols:

 Π \cong α ϕ λ \leq \neq \geq \pm θ Ω

Circumference of a circle = 2Π r Surface of sphere = $4\prod r^2$ Volume = $(4/3)\prod r^3$ $E = \text{volts/m}$ $H = A/m$ $S = W/m^2$ = power density Impedance of free space = 377 ohms $G =$ gain ratio = P2/P1 = 10^{**}(GdB/10) $GdB = 10Log (P2/P1)$ DBic = circular polarization; $dBid = dBi + 2.2$ = reference to a dipole Fuel vapor hazard = $S = 5W/cm^2 = 50,000W/m^2 = 5,000mW/cm^2$ [using peak power]

For **3dB**, G = 2 = 10**0.3 = surface of sphere/surface of hemisphere = $(4\prod r^2)/(2\prod r^2)$

S = (power density at distance r) = PG/ $(4\prod r^2)$

$S = E^2/377 = 377 H^2$

Note: PG/ (4∏r²) represents the **maximum S** for aperture antennas (i.e. the near field requires a gain reduction).

 $\text{Gr} = 4\prod \text{Ar}/\lambda^2$; therefore, $\text{Ar} = \text{Gr}\lambda^2/4\Pi = 4\text{ the effective aperture area of the receive antenna}$

 $S = PGt/(4\prod r^2) = W/m^2$

So, $S(Ar) = (W/m^2)m^2 = W = PtGtGr\lambda^2/(4\prod^2)(r^2) = Pr$

And $Pr/Pt = GtGr\lambda^2/(4\prod^2)(r^2)$ which is a unitless expression.

And 10log Pr - 10log Pt = Gt + Gr + 20log λ - 20log4 Π -20logr {Note: Gt & Gr are now in dB}

So $Pr = Pt + Gt + Gr + 20log\lambda - 20log4\Pi - 20logr$

{Note: **10logP = dBW**, referenced to 1W. However, **10log1000P = dBm**, referenced to 1mW.}

Since $c = f\lambda$ and $\lambda = c/f$ and $\lambda^2 = c^2/f^2$

 $Pr = Pt + Gt + Gr + 20log(c) - 20log(f) - 20log(4\Pi) - 20log(r)$

Or $Pr = Pt + Gt + Gr + 20\log(c) - 20\log(f M Hz) - 20\log(10^{**}6) - 20\log(4\Pi) - 20\log(r)$

 $Pr = Pt + Gt + Gr + 169.5 - 20log(f MHz) - 120 - 22 - 20log(r)$

 $Pr = 27.5 + Pt + Gt + Gr - 20log(f MHz) - 20log(r)$ {r = meters, P = dBW or dBm, f = MHz}

Pr = $37.82 + Pt + Gt + Gr - 20log(f MHz) - 20log(r)$ {r = feet *0.3048m/ft}

Pr = -36.6 + Pt + Gt + Gr - 20log(f MHz) - 20log(r) $\{r = \text{miles *1609.3m/mile}\}$

Pr = -32.5 + Pt + Gt + Gr - 20log(f MHz) - 20log(r) $\{r = km * 0.001 \text{m/km}\}\$

TCAS: TX at 1030 MHz; RX at 1090 MHz. Maximum $ERP = Pt*Gt = TRP(360/BW) = 400W = 56 dBm$.

L-Band Satcom: TX at 1626.5 – 1646.5 MHz with 5kHz channel spacing. RX at 1530.0 – 1545.0 MHz (Inm-C) & 1575.42 MHz (GPS). ERPmax = 16 dBW = 46 dBm = $39.8W \sim 40W$ (\sim 20W with 3dB gain). VSWR \leq 1.5:1; Z = 50 Ω ; polarization = RHCP $G =$

IFF: TX at 1090 MHz; RX at 1030 MHz. Peak pulse power at transponder = 27 ± 3 dBW = 30 dBW max = 1000 W = 60 dBm Gt max $= 0$ dB (includes line loss)

GPS: L1 = 1575.42 MHz; L2 = 1227.6 MHz

Gr = -1.0 dBic angles between 0 deg $\& 75$ deg from vertical; -7.5dBic @horizon. Antenna out-of-band rejection is: >6dB@ 1177 MHz, >10dB @ 1277, >20db @ 1525, $>$ 25dB @ 1625 MHz. [These are approximately L1 & L2 +/- 50 MHz] Antenna $VSWR \leq 2.0$ to 1. Preamp gain = 22-38dB at L1 & L2; filter rejection = 1dB at carrier +/- 15MHz, 3dB at +/- 60MHz, 50db at +/-100MHz. Out-of-Band Interference: GPS shall handle 0 dBm continuous RF power applied to preamp without degradation of performance for interference outside L1 & L2 bandwidths of \pm 100 MHz and from 50 to 12000 MHz (50Mhz- 12GHz). [50 – 1127.6 and 1327.6 – 1475.42 and 1675.42 – 12000 MHz] Gp = spread spectrum processing gain = code rate/data rate. Therefore C/A code $Gp = 1MHz/50Hz = 20,000 = 43dB$; p-code $Gp = 10MHz/50Hz = 200,000 = 53dB$. Burnout Level: At L1 & L2, unit can sustain 10dBm, CW, applied to preamp input for 1 minute without damage. Outside L1 & L2 \pm 100MHz, unit can sustain 3W(34.77 dBm), CW, applied to preamp input for 1 minute without damage.

Upper IFF vs GPS Analysis: IFF location = FS 513; GPS locations = FS 623 $\&$ FS 653.

Separation distance = $623 - 513 = 110$ in/12 = 9.17 ft

Pr = $37.82 + Pt + Gt + Gr - 20log(f MHz) - 20log(r)$ {r = feet *0.3048m/ft}

 $Pr = 37.82 + 60$ dBm + $0 - 7.5 - 20\log(1090) - 20\log(9.17)$

= 97.82 – 7.5 – 60.75 – 19.25 = **10.32 dBm**

However antenna out-of-band rejection is >6dB, and polarization mismatch is –3dB.

Therefore, 10.32 – 9 dB = **1.32dBm** which is slightly above the 0dBm requirement for CW interference without performance degradation. However, IFF power is likely to be 500W (3dB less), and antenna rejection is likely to be $>$ 6dB at 1090 MHz.

L-band Satcom vs IFF: